Challenges and opportunities of historical aerial/satellite images for studying changes in glaciers and Earth surface

Amaury Dehecq, IGE Grenoble, IRD

I. Context

Global DEMs

- GTOPO 30 ~1993? 1 km
- SRTM/NASA DEM 2000 30 m
- ASTER GDEM 2000-2013 30 m
- ALOS World 3D 2006-2011 30 m
- TanDEM-X DEM 2010-2015 12-90 m
- Copernicus DEM 2010-2015 10-90 m

Regional DEMs: Country maps, GIMP (2003-2009), Arctic DEM/REMA (2007-2018) etc

⇒ We need more consistent, regional to global and time stamped DEMs prior to 2000.

Applications: cryosphere changes, landslides, tectonics, geomorphology, forestry, hydrology

II. Historical data = opportunities!

Terrestrial imagery

- Swiss TerrA archive (1916-1945)
- Spelterini's hot ballon (1909)
- smapshot.heig-vd.ch (>1890, ~ 200 000 pictures)

Aerial imagery

- France → IGN "Remonter le temps" (>1919)
- Switzerland → swisstopo's "Journey through time" (>1926)
- US → USGS's Earthexplorer (>1945)
- Norway, Chile, Bolivia.... (~1930-1950)
- And many more!

Satellite imagery

Next slide

Mer de Glace (1909)

Smapshot archive

Aerial images over the Mont Blanc area – 1939 (IGN)

II. Historical data = opportunities!

Declassified satellite imagery

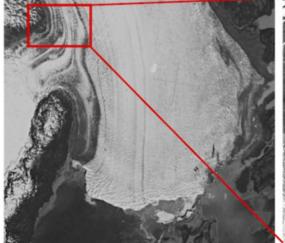
- US Corona (KH-4) 1959 1972
- US Hexagon (KH-9 mapping + pano. camera 1972 1986)
- Soviet spy satellites 1974 1999 ?
- French's SPOT World Heritage (1986 2015)
- Other unknown?

Coverage

Coverage of American KH-4 + KH-9 images (1959 – 1986) **2 million images**

KH-9 satellite and film recovery

Coverage of Soviet spy satellites 1974-1999 (Credit: C. Rada) > **400 000 images**


II. Historical data = opportunities!

Declassified satellite imagery

- US Corona (KH-4) 1959 1972
- US Hexagon (KH-9 mapping + pano. camera 1972 1986)
- Soviet spy satellites 1974 1999 ?
- French's SPOT World Heritage (1986 2015)
- Other unknown?

Spatial resolution

Landsat 3 1979/09/07 Pixel size: 60 m

Hexagon (mapping) 1979/06/15 ~6 m

Hexagon (pano) 1980/08/23 ~0.6 m

III. Challenges

Poor image quality

- Degradation of images
- Scanned images → geometric distortion
- Identify fiducial markers
- B/W images
- Saturation over ice/snow
- Presence of clouds

Poor metadata

- Inaccurate/unknown geolocation
- Inaccurate/unknown camera (focal length, lens distortion)
- Lack of ground control points

Time problem

- Large surface changes
- · Suboptimal acquisition date

Newton rings and scratches on KH-9 film

Fiducial markers on TerrA images

Geolocation errors, clouds and saturation on KH-9 images

III. Challenges

Poor image quality

- Degradation of images
- Scanned images → geometric distortion
- Identify fiducial markers
- B/W images
- Saturation over ice/snow
- Presence of clouds

Poor metadata

- Inaccurate/unknown geolocation
- Inaccurate/unknown camera (focal length, lens distortion)
- Lack of ground control points

Time problem

- Large surface changes
- · Suboptimal acquisition date

Newton rings and scratches on KH-9 film

Fiducial markers on TerrA images

Geolocation errors, clouds and saturation on KH-9 images

IV. Methods - Solutions!

Typical workflow:

- 1) Preprocessing → correct for scanner distortions, identify fiducial markers, enhance image...
- 2) Stereo processing → generate a DEM from a pair of stereo images
- 3) Coregistration → accurate georeferencing
- 4) Volume change calculation → filtering, gap-filling

IV. Methods – Stereo processing

How to generate DEMs from stereo images?

Overlapping images

- Camera positions
- Camera intrinsics (focal lens, distortion...)

Ground Control Points

IV. Methods – Stereo processing

How to generate DEMs from stereo images?

V. Applications - 1/3

Swiss-wide 1930 – 2016 glacier mass changes

V. Applications - 2/3

Landslide monitoring in Peru

Elevation change 1978-2016 (KH-9 − SPOT)

→ Highlights the impact of irrigation on landslides

Lacroix et al. (2021)

V. Application - 3/3

Worldwide ~1975 - 2019 glacier volume change - preliminary results

VI. Conclusions

Big data is not only about new satellites!

- A huge amount of untapped imagery
- Towards a ~1980 global "SRTM-like" DEM + ortho-mosaic ?
- Large potential for geoscience applications
- Issue: too few experts in the world → Need to build the expertise, requires technical support

A 1980 Google Earth mosaic?

Forests → blue areas